
AD—A049 827 BROWN UNIV PROVIDENCE R I DIV OF ENGINEERING F/S 20/il 
N

FINITE VISCOPLASTIC OEFLECTIONS OF AN IMPULSIVELY LOADED PLATE ——ETC (U)
SEP 77 P S SYP4ONDS. C T CHON N00014 75 C 0860

UNCLASSIFIED N000ItS O8oO/5 N!.

an~O~~ 827

-

END
DATE

3 -78

- -
~~ -a



~ ‘w~ -~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-~~~~~~~~ --~~ ~~~~~-w~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.

•

Division of Engineering

BRO WN UN IVERSITY

PROVIDENCE , R. I.

~~• _ 
_ _ _

~~ I FINITE VISCOPLA STIC DEFLECTIONS OF AN IMPULSIVELY LOADED~~ LAT E
/

BY THE MODE APPROXIMATION TECHNIQUE .

•

I I  
/ D D ç

~~~~~~~~~~~ 
~~ S./SYmonds ~~~ 5e T. ’ Chon

/ ,~~~~~~~~ ~-~ ‘ T 
~~~~~~~~~~~~~~~

F E B 13 1978 J
• 

•
~~~~ - — - - - - -

( C/ ~i~~-~i jjH’: ..

—

~~~~~~ Vc e I~~~ National Science Foundation 
---•.- - -- - .

~~
- ——

Grant ENG7’~-2l258

Office of Naval Research
/ — Contract ! OQl~ -75-C-~ 86~-— 

r—-.- -
, 

I

r’,N~~~F ~~~ i/,1~~ ~~~~~~~
N00014 0860/5 ________

~~~~~~~~~~~ ~~~~ ~~~~~~~

o ~~~ ~~ / ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~
1

— .
~~
—.--

~~~— ~~~~~~~~~~~~ • 
-

~~~~~~~~~~ ~~~~

-

~~

--
~~~~~~~~~

- — —
~~~~~~~~ 

-



-.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

N00014 0860/5 
____________ _______________— -~

111$ pir: !~-

FINITE VISCO PLASTIC DEFLECTION S OF AN IMP ULSIVELY LOADED PLATE ~~ -

BY THE MODE APPROXIMATION TECHNIQUE1

by P .  S. Symonds 2 and C. T. Chon3

Abstract ____________ L_

~

The application of the mode approximation technique to a fully clamped

plate is here described . Mode solutions for finite deflections are obtained

from a sequence of instantaneous modes. Master solutions for chosen initial

velocity amplitudes are constructed in nondimensional form. These depend

weakly on a parameter of viscoplastic material behavior and size of structure ,

and so can be applied to a variety of loadings and structures. Finding each

instantaneous mode shape and acceleration constitutes an eigen-problem , solved

by finite elements with iterations. Comparisons with recent tests on steel

and titanium plates are discussed in some detail .

1~.
LResearch supported by National Science Foundation under Grant ENG7’~-2l258 and
by Office of Naval. Research under Contract NOO0l~-75-C-O86O.
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1. Introduction

The “mode approximation” techninue , suggested first for impulsive loading

of rigid-perfectly plastic structures at small deflections [11 , must be modified

if conditions of many practical problems are taken into account . In tarticular,

plastic rate dependence and effects of large deflections make the oric’inal an-

proach unrealistic. The clamped circular plat e is a case where th_ behavior

becomes markedly different as finite deflections are reached , flexural changing

to membrane action. Due to the increase in stiffness the final deflections and

response times may be reduced by an order of magnitude. A further large reduction

may be caused by plastic stt’ain rate sensitivity , as exhibited by mild steel,

commercially pure titanium , and some other metals.

A way of extending of the mode technique to take account of f ini te  de flections

for nonlinear viscoplastic material, was suggested in [2] and anplied to a simple

model with two lumped masses. This made use of a renreserttation of viscoplastic

behavior by constitutive equations of homogeneous type [3] (without a yield con-

dition), which are a conservative approximation and greatly simplify the analysis.

The first application to a structure treated as continuous was to a c1ampe~ c r -

cular plate [ ‘4).  The present treatment extends that of [41 and includes dis-

cussion of comparison with recent test results (5].

Large deflection viscoplastic problems of dynamically loaded structures are

not simple. Full details of the response are obtainable only by numerical

methods; unfortunately these are still far from uniformly reliable. Neither

are ad hoc short-cut methods, which can always be devised. The mode approach

extended to large deflections by the use of instantaneous mode solut ions , offers

both practical and conceptual advantages.

_ _ _ _ _ _ _ _ _  - ~ TT~ --
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where the integral covers the whole structure, c’ is the mass density; O.,a.

are generalized stress and plastic strain rate resnectivelv in the actual solu-

tion, and Q~ , the corresponding quantities in the mode solution . if
The initial value ()° = ~)(O) of the scalar time f unction in Eo • (1) is

a 
arbitrary , as far as the above properties are concerned. It can be chosen so

as to minimize the initial vali~e ~
° 
,

• = 

~ 1V~~~~ 
~~~~~ - ~~~~~~ 

dV (‘4)

This is a minimum when

J PU~$1dV
~~O~~~~~~O V ( 5 )

m 

J P 14~j
dV

Note that the funct ions $~(x) are properties of the structure , determined

from the field equations and boundary conditions. When Ci° is chosen accord-

ing to Eq. (5)  the two solutions not only approach each other but often become

identical after an initial period . This means that if the final deflections

are determined by integrating the mode solution Eq. (1) with in itial amplitude

given by (5) ,  the error in the major final deflection is generally much less than

that in Initial velocity [1].

Solut ions with the separated variable form of Eq. (1) can be found if the

equations of dynamics and kinematics are linear and the constitut ive equation s

are homogeneous . The latter requirement can be met by the use of homogeneous

“viscous” relations [3] - which include rigid-perfectly plastic behavior as a 
•

limiting case - but the treatment of finite deflect ions rec~u~rcs nonlinear terms

in the field equations which make it impossible to find a mode form solution
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in the sense of Eq. (1); these equat ions imply that the shape functions •.(x.)

hold throughout the response . In contrast to these “permanent ” mode solut ions ,

“instantaneous ” mode solutions may be found which satisfy the field equations

with current deflections regarded as known and fixed , and for a given measure

of velocity magnitude . F irst defined in connection with applications of the

mode technique to a structure of rigid-viscoplastic material , considering small

deflections (7 ,8], they provide a means of extending the techn icue to large de-

flections [2 ,41. Alt hough the convergence theorem Eq. (3) holds only for small

deflections, the concept of start ing the mode solution with amplitude given by

Eq. (5) remains valid. The subsequent deflections of the solution started in

this way, with initial mode shape and acceleration obtained from the small de-

flection equations, may be obtained approximately by fitting together a senuence

of instantaneous solutions. This procedure will be outlined now for the cir-

a cular plate problem.

The plate deformation is defined by displacement components ~~ , ~~ and

by generalized stresses M
~ ~e (bending moments) and Nr , N

0 (in-plane

forces), referred to radial and circumferential coordinates j  , 0 , Fir. 1.

The plate has radius R , thickness H . We take its material behavior to be

described by stress-strain rate relations appropriate for strongly rate sensitive

materials with constants determined from stress-strain tests at constant strain

rate . In terms of uniaxia]. stress a at a fixed olastic strain level and cor-

responding stra in rate , it is assumed that such dat a can be adequatel y rep-

resented by the equation

(C)

• 
- _____ — - 

- _ •



• —~~ -• —--~~---~~~~~~~~~~ _ P
— —~~ • .. 

-• —--~
-—--•,- 

~
.-“ —a----

5

where a , , n are experimental, constants which depend on the chosen plastic

strain magnitude; in the case of mild steel , 
~ 

is conveniently taken as the

lower yield stress. The experimental constants a~ , ~ n are used to derive

the constitutive equations in terms of generalized stresses and conj ugate strain

rates. As will be outlined subsequently , we adopt a sandwich nlate model for

• this derivation, assuming a generalization of Lo. (6) to describe the plane stre5s

H behavior in the two sheets, whose spacing is taken as h H/2.

Strain rate components ‘ r ~ 
(curvature rates) and 

~r 
‘ 

C e (middle

surface extension rates) for “moderately large” deflections are taken as follows:

3— 2—
• 3 w  . 1 3 w

K = — K = — — (7a)
r — — 2  e — — —3t3r r 3r3t

‘I

~~~ 
+ ~~ 

~2- 1 
~~ (7b)

r 0 -

It is convenient to define dimensionless strain rates as

K K C C
r • 8 • r • 0 (8)

• K K C C
0 0 0 0

2~ lee
where u~ = -‘-r~

2- = ..2. . In terms of d imension less displacements and other var-

iables , these are

• i s ,, . i i  a
, (ga)

~ (~~‘ + ‘ o = (9b)

— ~~— _-  
—
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where

- 2~iw~~~~— u~~~ j— ~~~~~~ t~-

= , a = 
8c0

R T  
~~o

R /~ 
(lOa ,b)

0 H2 0

where 3f/3t , V 3f/3r , and p is the mass per unit volume.

With this definition of reference time t , the equation of energy dissipation

rate is

ci.
- ( w ,  1- u~ )rdr = a (ma r 

+ n1
r~r 

+ m0~0 
+ n 0A 0

) rdr (11)

0

* where we have defined dimensionless stresses as

H M N N
a 

r 0 r 0
m
~~~~

j-_ , m
8 =~~— , n = ~~— , n

0 =~~— 
(12)

with = , N = a N  ; these are fully plastic bending moment and

axial force per unit length, respectively, corresponding, to the stress defined

in Eq. (6).

Consistent with Eqs . (11) and (9) ,  the equations of dynam ics are

( rTnr )” — + 2(rTi w ’) ’  = r~ 
(13a )

• 
~~~~~~~~~~~ 

— ne 
(13b)

with boundary conditions

-~ ~~~
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~(i,t) ~z’(l,t) = 0 ( lU a)

~1(O,t) = ~i(l,t) = 0 (lLeh )

m (O,t) m0
(O,t) (llec )

Finally we write suitable const itutive equations. We want these to

represent the main features of rate sensitive plastic behavior and to reduce

to rigid-perfectly plastic behavior as a limiting case. Strain rate test data

of the metals of present interest can be quite accurately represented by Eq. (6).

As already mentioned, a sandwich model is used to derive the stress-strain rate

relations for our• plate, based on this behavior which is readily generalized

(following Perzyna [9]), adopting a Mises yield condition for plane stress. Use

of a sandwich model , with constants so that both simple bending and simple ex-

tension of the uniform plate are correctly described , is an artif ice which sim-

plifies the equations and is conservative. A further simplifying and conservative H

artifice is the use of homogeneous stress-strain rate relations. Thus the gen-

eralized form of Eq. (6) for plane stress is

• -‘1/n’
~ j g (c 0 )
4= I~~~ I -IL (15a)

0 L c  J0 a

where • 2 •2 •. .2 1/2
g(c ) —(c + C C + C ) (15b)

B 
,
,~~

- r r O  8

and a , B take values r or 0 • The new constants a’ , n ’ are found from

the experimental constants a , , n so that the homogeneous replacement of

Er,. (6) has cosvnon stress and derivat ive do/dc at a chosen strain rate. These

- • —•~~~~~~~~~~~ ----- ,- - _ _ _ _ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --~~- - - -— - ---
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matching condition s make the homogeneous forms an accurate and conservative

replacement [2 ,3]; they are obtained by tak inc’ n ’ = vn , a cia , wrc ere

~ + ~,1/n ~~
‘ 

~ +
V - — - 

1/ 
= (16a ,b )

where

V = g(E )
- 

o a

and ~ denotes the strain rate state at which the matching is made . (Errors
a

due to these and other idealizations and approximations are discussed in a later

section). From Eqs. (15) and (16) the sandwich beam model leads to equations

wh ich allow the generalized stresses O~ to be derived from a potential function

of strain rates ; we write

3w • n ’ r 1+1/n’ i+itn~1
• 

= 

~~~~~

- ; w (q~) 2( l+n’) + X _ (17)

where Q~ 
= (m 

‘ 
11
r , 

m0 ‘ ; = 

~~r 
‘ ‘ r ‘ ~o ‘

and 
~~l/2

X~ 
,
,
~~ 

ui[~r ~ ~~~ 
+ 
~~r 

± 
~r

XTb O ± (~~ ± 
(18)

Conversely, the strain rates o
~ 

may be derived from a notential fun ct ion of

the stresses Y(O.). Further details are given in [Le] includinc’ illustrations

of surfaces ‘P (Q
1
) = constant for our problem. 

- - •~•~~ ‘ .~~~S ~~~_~~% L 4 _ . A á ..t....S. ~~~,,— _ - -- - ’ ” .. --&-~~- ~‘ • — ~~~ •
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H
We now look for a solution in mode form, and write the velocity components

as

= i.~(t ) 4 1
( r) ( l Y a )

c~i(r,t) = ,.~(t )4i2
(r) (lY~ )

We take .~(o) = 1 , so that ~.~( t )  denotes the velocity (nondinensional) of

the midnoint of the plate. Because the strain rate-velocity exnressions are

linear in the velocities and the stress-strain rate relations are homogeneous ,

we can write the latter in compact form as

w•.~ 1/n’
Q. = ~~~~~ } B . . k . ( 2 0a )

where i , j = 1,2 ,3,4., and sunrnation over a repeated suffix is implied ,

m 
~r 

m8 n
9 

)

k
1 

= ( 
~~~~~~~ ~~ + 2w ’4~ — ~4j 

~~ 
) (2lb )

-

~~~~~+ 
+ ~~_ ) ~~~~~+ 

- 
~~~_

) ~~~~+ 
+ ;_) ~~~~+ 

+

= ~ i÷ - i ~.s ~ (j ,~~+~~~_ ) 
~~“ +~~~~~~~_~~

+ x _ ) ~(x 1 — x _ ) + x , ) ~-(x~ - x )

• 

~~~~~~~ +~~~~~~~~~~) ~~~+
÷
~~)

_ _  — ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _
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= {
~ ~ 

± + (k 1 ± k2
)(k

3 ± k4
) + (k 3 ± k 4 )’

~~}~~
’ (2 1~~)

In terms of these quantities the energy rate equat ion is

• .. 1 I B. .k .k .rdr
I 1111

W a. S J—W~~~ . 1 J  ~~~ (22)
(1 2 2

• j ( ~ i + ~2 )rdr

The dynamical equations (13) take the forms

1

i~f ~:]~
‘ErB2.k .)

~ 
— ( B k )’ + 2(rB .k w ’)

’

~j 
= (23a)

• 
u ( ~*)~~

‘
~~ rB2.k.)’ - B4 •k ~J 

= 
~R t

~~~~2 
(23b )

Inspection of Eqs. (23) shows that if w ’(r,t) is either zero or treated

as known and independent of time, the equations are separable into three ordinary

differential equations

w,. = — Ap (2~~)

L~[~1, •2 
w’] + Ar$1 

0 (2L4b)

‘ 
~2 

‘ ~~~~~ + ~~- A r4 2 
C) (2~ c)

where , L
2 

are the expressions in brackets on the left hand sides of Cr, .

(23a) and (23h), respectively, and A is .i constant. Cvidentlv i~’ w ’(r,t) ~s

_ _ _ _ _ _ _ _ _ _ _ _ _ _  - —- —~~~~~~~~~~ , 
—_-

~~~~~~~~
-
~ 
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taken as fixed we have a nonlinear eigen-pr’ohlem in which the constant A is

the eigenvalue, and the shape functions 41
(r )  , 42

(r) are eic ’enfunctions.

Note that A is given by the quotient in brackets in Er’. (2 2 )  in terms of

‘ ‘
~2 

~ and w ’. 
- 

•

How to obtain a mode form soluti on from a sequence of instantaneous modes

can now be seen. The solution starts with a choice of initial value =

At t 0 the deflection field and slope ~“(r,0) are zero. 
[he initial mode

from solution has $2
(r )  = 0 , and ~1

(r) can be foun d without d i f f icu l ty  [L~,lO] ,

• together with the corresponding value ~f A . The secular equation I~n. (21.ea )

can readily be integrated if A is held constant, to provide a rouc’h “small

deflection” solution.

A much better solution for finite deflections is obtained as follows . Sup-

pose at time t the eigen-problem has been solved, giving j.~ (t )  , ~.~(t )  , •

4~ (r) , the deflection w(r,t) , and slope w ’(r ,t). Approximate de-

flection and slope fields at t + At are

w(r
1t+

At )  w(r ,t) + (At )~r..~(t)qi
1
(r) + ~.(At )2

~ ...( t ) p 1
( r)  (25 a)

1 2
w’(r,t+At ) w’(r,t) + (At )w~(t)i~~(r) + ~-( At ) ~ ...( t ) ~i~~( r )  ( 2 5 b )

With the approximate field w ’(r ,t+At ) given by En. (25b), the elgen-problem

• for t + ~t can be solved, furnishing approximate values of 
w~.(t+& ) ,

.. <t+At> <t+lst>
w
~
(t+

~t) , •~
(r) , *~(r) , etc. With these , better approxi~vitions can be

written as

- -
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1~ <t> <t+At~~
w(r,t+M:) = w(r,t) + ~-(At) ~~.~~t)~h1

(r) + ~.a.(t+At)4>i
(r)

J 

(26a)

1 <t+At ’
~~

w’(r,t+At) = w ’(r ,t )  + ~~At) t..~(t)4~ (r) + 7.~(t+At )~~(r) (26b)

This process can be repeated until steady values are reached. It is st arted

at t 0 when w(r,O) w ’(r,O) = 0.

An eigen-problem must be solved for each field w ’ in this process. In

[1~~] this was done by an iterative scheme , in which the terms of higher order

derivatives in Eqs. (13) were written as functions of the lower order terms,

and integrated numerically over the radial coordinate. This crave an essentially

exact solution at small computer cost when there was no difficulty with conver-

gence , as was the case at small magnitudes of . At larrer values of ~~~~ ,

• such that the central deflection exceeded about ~ thicknesses , the acceleration

magnitude exhibited poor convergence , although the def1ection~ sho~,e ~ little

change with increased nusbers of iteration cycles. An -d ternative nrric~dn r~
using finite elements was therefore devised , taking cubic and linear expres-

sions for •., and •2~ 
respectively, in each element. Iterations were

required to obtain the unknown slope w ’ in various matrices. Some ~if f i-

culties with convergence still occurred at the largest deflections .

We have emphasized here the determination of mode responses, i.e., the in-

tegration of the field equations of the structure whose starting velocities nave

the form of the initial mode shape (appropriate to zero deflect ions and to the

_ _ _ _ _ _ _  — — — - - - - ---
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chosen initial velocity amplitude), and which reach large deflection magnitudes

in the course of the response. We have outlined an approximate integration

technique using a sequence of instantaneous modes (each appropriate to the cur-

rent deflections and velocity amplitude) . This technique appears promising as

an efficient and flexible scheme to obtain the final defle ct ions and the duration

of the motion , among other quantities. Other methods may be used , of course ,

including numerical codes if available .

- 

• To obtain the mode solution which provides the best approximation for a

particular problem , for which an initial transverse velocity field V (r )  is

prescribed, the amplitude ~~ of the initial mode velocity field must be found

by the minimizing technique expressed by Eq. (5) : using nondimensional variables,

= 

J0

~
0(r)s

ir7/
/
’J

0

s~rdr (27) 

•

.

where ~°(r) V(r)(2t/H), using the reference time t defined in Eq. (lOa), is

the prescribed initial velocity field in nondimensional form . The integration

in dimensionless variable s can be carried out if the parameters a , n , and RIM

are specified, where ci is defined in Eq. (lOb) and n implicitly in Eq. (6).

It is seen that a depends on the size R as well as the shape RIM of the

structure and on the material constants ‘ % ~

In principle, such an integration to obtain the mode response should be

repeated for each case of interest, i.e., for each V(r ) , R , RIM , a

etc. When an assessment of deformation for severe pulse loads is required, there

are often many uncertainties about the loading intensity and distribution over

the structure, and about the structure itself , particularly concerning its mat-

erial behavior at high strain rates. Hence one wants not an isolated calculation

but curves showing h~~i the deformations depend on various parameters as they vary

• . 
- -  — - - --—--—

~~~~~
-- --



over appropriate ranges . The mode approximation technique is narticularly

suited to looking at variations over such ranges with a minimum of calcul-

• ations .

A set of mode responses in noridimensional form , giving for examp le a curve

of final deflection ratio w~/H as a function of initial mode velocity ampli-

tude 4), for “representative” values of ci, n, and RIM , provides a sort

of “master response function” from which a considerable range of particular

cases can be examined with trivial further calculations. This is due partly to

the basic device of the mode approximation concept of matching mode amplitude

to an arbitrary ini tial velocity field as in Eqs. (5 , 27), and partly to the

insensitivity of the nondimensional mode solution to various parameters. In

particular, the solution depends very weakly on a, since a anpears in the

equations only as ct~”~
’ (where n ’ is usually in the neighborhood of 10).

• <0> I
l

Finally , the initial mode shape function 4~1
(r) = •(r) is insensitive to the

initial amplitude it~~. as well as to a. These points, which are imnortant

for practical use , are illustrated below.

— - 3. Application to Tests

In tests [5] on fully clamped plates of mild steel and titanium, explosive

loading was applied by detonating a disk of explosive sheet (Detasheet) fixed F
centrally on the plate and separated from it by a buffer pad of styrofoam, Fig.

2. The total impulse applied to the plate was measured in each test by a bal-

listic pendulum. It was assumed that velocities V(r) were imposed, such that

V (r ) V for O~~~r~~~a0
( 2 8)

V(r) = 0 for a~~~r~~~R

where a is the radius of the disk of explosive. Further it was taken that

V
0 

—.
~~

——• (
~~~)

sa lLp

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•
~~
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where I is the measured impulse , and p is the mass density of the plate of

thickness H . This assumes that reaction stresses lxi the plate are negligible

during the pulse, and that the explosive pressures are uniform inside radius a

and zero outside. It is further assumed that the pressure pulse is so short

that it can be treated as a pure impulse . The expression for init ial mode ye-

locity amplitude then gives the relation

•~ 
a/R 1

* 
= 

I 

$lrd

,
~/”i •~rdr J (

~
) (30)

where ~.LV . From this definition, combined with Eqs. (lOa) and (29),a H o
we obtain the relation

• 2R ‘9~ 2v’~ RIw = — / — Vo H a o ir 
H
2 2 ,’~~

- (31)

Suppose now the final midpoint deflections w~/H of the mode response have

been computed as a function of initial mode amplitude w~ , for suitable values - -

of a , n , and R/H . Figure 3 shows two such “master” solutions for steel

and titanium plates, using numerical values in Table 1. Fig. ~ shows nondim-

ensional curves of mode velocity amplitude as function of time. From the curves

of Fig. 3, Eqs. (30) and (31) enable us to obtain curves of deflection as function

of applied impulse I for any assumed impulsive pressure distribution , and to as-

sess the importance of uncertainties in the material and geometrical descriptions

The procedure is inverse ; rather than specifying the impulse and determin ing the

corresponding deflection, the latter is chosen first. The ratio w~/H determine s

from the appropriate curve of Fig. 3. The value of is then obtained

from Eq. (30) for the specified ratio a/R of the impulsive loading. In prin-

ciple, the ratio w,,,/w0 depends on w~ , since the initial shape function

- - ~~~~~~ -~-i _ _ _   - -

— — — -



“•-i~i i ~~~~

--..- —--

~~~ 

-- --
~

-.—

~

,-

~ 

_ I_
~
-
~

---
~
- -

~~~~~~~~~~~
--,—-

~~~~~~~~~
— —•-.—

Table 1

Steel Titan ium

Stra in Rate Constant1 a psi 32 ,4002 36 ,k0O at c~ 1%
(35 ,200 long., 37 ,700 trans.)

38,500 at = 2%
(37 ,800 long., 39 ,200 trans.)

Strain Rate Constant1 
~ 

sec~~ *40 120

Strain Rate Constant1 n 5

M&as Density p lb sec2in. 4 0.73 x 1O~~ 0.42 x l0~~

Plate Radius R in. 1.25 1.25

Plate Thickness H in. 0.076 0.092

(Average )

BR 3

t —i ~~, 
~~
— a 23.0 33.8

‘As used In Eq. ( 3 ) .

2Lower yield stress.

- 
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for the viscoplastic material depends on the init ial velocity as well

as material parameters . In fact , the dependence of on i~~~~ 
is foun d to p

be exceedingly weak , and a single curve for each plat e can be drawn showing

as a function of a/R. These are plotted in Fig. 5. The two curve s

are indistinguishable over most of the range , showing that the initial shape

- 
- function $1

(r) is insensitive to all the parameters. Writing w~/w0 as

J(a/R) from Eq. (30), we find I from Eq. (31) as

= (_~~~H2R/~~o1 ~~~~~~~~~~~~ ~~~~~ (32)

Obviously the same procedure for obtaining the deflection as funct ion of in-

pulse (both in physical units) can be carried out for any assumed initial velocity

form V(r).
I

Suppose now we wish to examine possible variat ions in some of the physical

parameters assumed in the above calculation. There are many quantities whose

values are uncertain . For example , in the calculation we have assumed the in-

itial. impulsive pressures to give rise to uniform velocity ‘J~ inside a cir-

cle of radius a and zero velocity outside this radius, with a taken as the

— radius of the disk of explosive sheet. Series of tests were conducted with

nominal a/R = 1/3, 1/2, and 1. The test arrangement as sketched in Fig. 2

makes it evident that the actual loading area must differ from the nominal one;

there must be a “shadow effect ” due to the buffer pad . (In practical problems

of explosive loading on structures , as opposed to laboratory experiments , far

more uncertainty than this would be expected) . Other somewhat uncertain quan-

tities are the parameters of strain rate sensitivity 
~ 0 

n 
‘ 

£
0 

, obt ained

- - from stress-strain tests over a range of strain rates. The se pertain to a

f ixed plastic strain magn itude , which should be chosen so as to conform —

- - .
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= 1 reasonably well with the actual maximum strains . (For mild steel we have used

the lower yield stress, rather than stress at fixed plastic strain). As “non-

inal” value for the titanium plates we took a = 36 ,000 psi corresponding to

1 percent strain.

The sensitivity of an estimated impulse-deflection curve to moderate changes

in the parameters a/R and a can now be examined simply by changing either

of these quant ities in evaluat ing I from Eq. (32). Thus the effect of changing

a/R by 20 percent (from 0.33 to 0.40) is obtained by reading a new point for

J(0.’eO) from the curve in Fig. 5. Since both a
2

/R2 and J ( a /R)  increase, and

I depends on their ratio, the effect is small. This is illustrated in Fig. 6

together with test results, to be discussed later. Sensitivity to a change in

the magnitude 0
0 

is of less interest for steel than for titanium whose strain

hardening slope is larger [5]. If the fixed plastic strain level is taken as

2 percent rather than 1 percent, the appropriate average value of o
O 

is about

39,000 psi. Equation (32) shows that I is proprotional to ; the small

change is shown by the shift in the curve in Fig. 7 when 36,000 is replaced

by 39,000. Note that the parameter a is changed by a like amount, but the

effect on the “master response curve” of a 4 percent change in a is effective lv

zero , because of the weak dependence already mentioned.

4. Comparison with Experinents

The experiments reported in [51 were planned so that the concepts and as-

sumptions of the extended mode approximation technique could be checked directly.

- - The intrinsic error in the estimation of deflections of the fully clamped plate

is represented by Eq. (30) for initial velocity distributed as in Eq. (29); eq- — 
-

uivalent expressions for w/w 
- 
for other types of velocity pattern are readily

_ _ _ _  —- _ _ _ _

~

~ I



derived. The plot of in Fig. 5 shows that this rat io is positive or

negative as a/R is larger or smaller than about 0. 47. For impulsive pres-

sures over the whole plate (a/R 1) the error is positive ( conservative ) ,

while for a/R = 1/3 the error is negative since w~/w~ is about 0.6. For

aIR = 1/2, the intrinsic error sh uld be nearly zero.

The tests used nominal values of a/R equal to 1/3, 1/2 and 1, using

steel and titanium plates, and impulse magnitudes such that final deflections

up to more than six thicknesses were produced. Examples of these test series

are shown in Figs. 6-li , where Fig. 9 shows a typical final deflected shape and

Figs.10,ll show examples of respon se times as function of impulse , in two series —

of tests. More results and details of the materials and techniques are given

in [5].

The plots of final central deflection as function of impulse in Figs. 6-8

illustrate the results for the three nominal a/R values. If no other important

idealization or error were involved, the full curves showing deflection esti-

mates from the finite-deflection mode theory would show the intrinsic error;

for a/R = 1/3 and 1 the estimated deflections would lie below and above the

test values, while f o r  a/ R  = 1/2 the estimates would be close to the cb served

values. No such trends are observed. Fig. 7 (for a/R = 1/2) shows test deflec-

tions substantially smaller than the mode theory prediction. For a/R 1,

the cbserved deflections lie above the predicted curve, while for a/R = 1/3

they lie below, the reverse of the intrinsic error. (In these curves the curves

labelled “small deflection ” are from simple bending theory, and exhibit much

larger errors).

These anomalous results point to the importance of other error sources.

There are two kinds . “Experimental” errors are ones in which one or more as-

sumed conditions of the tests are not met . “Theoretical” errors also are pre sent ,

-

~

--- - -

~
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apart from the intrinsic error already discussed, because of various idealiza-

tions and approximations in carrying out the mode solut ion to obtain finite

deflections.

Of the possible experimental errors only one is believed significant . The

condition of full edge fixity was not satisfied in the tests where impulsive

pressures were applied over the entire plat e (aIR = 1). The heavy clamping

frame sketched in Fig. 2 used eight 1/4 in. bolts. The friction forces on the

clamped portion of the plate were adequate to prevent slipp ing at the smaller

loads used for a/R = 1/3 and 1/2 , but in the tests with aIR = 1 inward dis-

placements at the specimen edge as much as 1/16 in. were measured. These led

to greatly increased deflections, as indicated by the curves for “small de-

flections” in Figs. 6-8, from a theory assuming absence of membrane stresses.

The negative error of the est imated deflections by the mode technique shown in
7

Fig. 8 are due to swamping of all other errors by this failure in the assumed

• constraint. We mention that the test series on titanium plates [5] also showed

anomalously high values of deflections in tests at a/R 1, but the test points

fell, slightly below rather than well above the mode response curves.

Turning to errors in the theory, we summarize below those expected due to

idealizations and approximations made in implementing the mode technique. Un-

like the intrinsic error already discussed, these are almost all positive (con-

servative) although in some cases the argument is conjectural. This seems Un-

avoidable in discussing an estimation technique at this stage.

(a) Material Behavior

(1) Elastic strains are omitted as negligible compared with plastic

strains. For such a rigid-viscoplastic theory to be realistic,

an energy ratio criterion has been postulated. Here the ratio of

initial kinetic energy to the maximum elastic strain energy is

- _________ 
_ _ _ _ _ _   
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greater than 10 for impulses greater than about 0.2 ib-sec , in

all cases. Since the criterion appears to be well satisfied for

all of the tests reported in [5), the error due to neglect of

elastic deformations should be less than 10 percent even for the

smallest impulses. This may be argued to be a positive error

when the load pulse is short , as here [11].

(2 )  Constitutive equations are derived from a sandwich model ‘rith

separation between sheets half the uniform plate thickness H.

With this choice , the stress-strain rate relations are correct

for pure tension/compression and for pure bending, and conserva-

tive for general stress states in the sense that smaller stress

levels are required for a fixed dissipation rate.

(3) A homogeneous viscous stress-strain rate representation is used ,

without a yield condition , and matched to the viscoplastic form

in such a way that stress magnitudes are very close to tl~e “correct”

ones near an assigned strain rate, and always below them . The er-

ror is positive on this account [2,3].

(I.) The constitutive equations relate stress and strain rate states

explicitly,  influences of strain hardening being implicit only .

With the choices we have made of fixed strain level (or of lower

yield stress in the case of steel) the error is positive . Its

magnitude can be estimated, as has been shown.

(5) Strain rate history effects are neglected; the stress is written

as a fun ction of instantaneous strain rate, and the constitutive

equation s are derived from tests at approximately constant strain

rate. Strain rate jump tests [12,131 among others demonstrate

-

_ _ _ _ _ _  
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th~’t the stress is not a function only of current strain and

strain rate, and some error must therefore arise. The inform-

ation from tests is meagre and the behavior is complex , so that

no firm statements can be made about the magnitude or sign of

the error. The present structural problems involve high strain

rates which are rapidly imposed by the dynamic loading and then

decrease to zero. It may be conjectured that the neglect of

prior straining history leads to a positive error in the deflection

estimate , the stress levels being underestimated. (This follows

from interpretations of test data either by choosing plastic wo~k

as a state variable [14] or regarding dynamic recovery as the es-

sential process [15].)

(b )  Numerical or Theoretical Approximat ion s 7

(6) The mode technique , as applied here to finite deflections , in-

volves a sequence of modal fields of velocity and acceleration

which do not fit together continuously except at the plate center ,

where the mode velocity is ~‘~ (t ) .  These mode form solutions

correspc~~1 to a minimum dissipation rate for a fixed kinetic en-

ergy [7,8,12], hence to slower deceleration magnitudes than the

actual solution . On this ground , the error resulting from the

instantaneous mode technique is expected to be positive.

(7) The numerical determination of mode shapes and accelerations re-

quired iterations. At each stage first approximations were used

for the new deflection field and for the eff ect ive strain rate

(furnishing u and v); solution of the resulting eigen-problem

then led to improved values which were used to start a second

_ _ _ _ _ _ _ _ _ _ _ _ _ _  
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cycle , etc. Convergence was very slow at the largest deflections.

Ten iteration cycles were mainly used, except for a few trial cal-

culations. These were not enough at the largest deflect ion magni-

tudes , and the deflections so calculated are too large (decreasing

magnitudes being obtained by additional cycles). The finite ele-

ment form of the equa tions involves further errors of un-

known sign and magnitude. Thus the net error due to numerical

causes (at the largest deflections) is probably positive , but this

is uncertain .

( 8)  The field equations include finite deflection terms which are con-

sistent hut approximate , as in the von Karman plat e equat ions . They

are strictly valid for moderately large deflections, but are ex-

pected to be very reliable for all the deflect ion magnitudes con-

cerned here , where the maximum de flection is less than 1/5 the dia-

meter.

(9)  Finally, the explosive pressure pulse is treated as impulsive , i . e . ,

delivering finite impulse with zero duration. This idealization in

which a single pulse of arbitrary shape is replaced by a pure im-

pulse , is known to lead to over-estimates of final deflections of

structures treated as rigid-perfectly plastic by small deflection

theory [17]. A simple model of this type gives the error as roughly

equal to the ratio of the pulse duration to the duration of motion

of the structure. Intuitively, similar results should hold true for

the closely related rigid-viscous or viscoplastic behavior treated

here , and for large deflection problems. The tests of [~ J involve

pulses whose duration was estimated at less than 10 usec. ,  so the pos-

itive error from the pure impulse idealization might be around 10 per-

cent.

_ _ _  

j
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It is remarkable that the possible errors introduced by the idealization

and approximations listed above are almost all positive . The exceptions are

items (7)  and (8); there is no reason to suppose that these are predominant.

Again , no apology is made for the fact that the arguments about some of the er-

rors are conjectural. This seems unavoidable when one is try ing to assess an

approximation technique by comparison with actual measured behavior of struc-

tures. One can hardly make rigorous statements unless one is deeJir .~ with

“exact” theory, or making comparisons with quantities furnished by a computer

program. Even then, rigorous statements may be illusory, given the fictional

nature of computer outputs.

Comparisons with measured response times are typified by the results shown

in Figs. 10 and 11. In the tests [5] a “.~ondenser microphone” device was used to

obtain information about time history of deflection . This consisted of a brass

plate held on an insulated rod, with geometry as indicated in Fig. 2. Deflec-

tion of the plate caused roughly proportional capacitance chan ges , which were

recorded. Quantitative accuracy was not possible, but two times of interest

were obtained , namely the time to reach maximum deflection t~ , and the time

when the (estimated) permanent deflection magnitude was reached on the in-

itial rise of the signal. These two times are plotted in Figs. 10 and 11 as

function of test impulse, together with the tine tf at which motion ceases

according to the mode approximation technique . According to this technique the

respon se time first increases with impulse , reaches a maximum , and then slowly

decreases. This behavior is readily un derstandable: at large deflections where

membrane effect s dominat e , the plate is much st iffer than in the simnle bending

range. The response time then depends mainly on the maximum tensile forces

rather than on the impulse . Since the material is strain rate dependent , the

membrane forces increase with impulse and the response duration decreases. Th ~

-- 
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particular test series shown for illustration in Fig. 11 shows this decrease

plainly. However, this is exceptional in that most of the similar plots in

[5] are similar to those in Fig. 10 which shows virtual independence of the

measured times with impulse . In all cases the agreement of test times with

the maximum response times given by the extended mode technique is ouite good ,

while the response times predicted by the small deflection theory have no

resemblance to the observed tines.

5. Conclusions

We have reviewed the application of the mode approximation technique to

estimate finite viscoplastic deflections of an impulsively loaded fully clamped

circular plate. The concept of a “master solution” for a range 6f initial mode

velocity amplitudes, taking representative values of the dimensionless para-

meters, is shown to reduce the calculation s to a minimum, and enhances the

efficiency of the method. Comparisons with tests on plates of steel and tit-

anium are made , and discussed with particular reference to possible errors in

the estimation technique. Certain errors are intrinsic in the method; others

occur as result of idealizations and approximations in implementing it. The

tests substantiate the expect ation that the errors of the latter type are

predominately positive, i.e., tending to over-estimate the final deflections.

The intrinsic errors are either positive or negative, depending on the distri-

bution of impulsive pressure; they could not be identified in the test results ,

apparently being outweighed by the other tyne. The tests show that the technique

as applied is conservative when the assumed edge constraint condition was sat-

isfied, and close enough to the observed deflections to permit confidence in

practical applications .
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Captions for Fipures

Figure 
p

1. Notation for axially symmetric deformations - nhvsical units.

2 Clamped plate as used in experiments [5].

3 “Master response curves” for steel and titanium niates. w,JH is
nondimensional final, displacement at center, ~i9. V9t/H is non-
dimensional initial mode velocity amnlitude .

‘4 Illustrative curves of mode velocity amolitude versus time .

5 Ratio of initial mode velocity amplitude ~~~ . to specified initial
velocity mapnitude s~ (nondi mensional) , Fiven by mode technique.

6 Comparison of measured final displacement-thickness ratio from
exneriments with predictions by ext ended mode technique and by
“small—deflection ” mode technioue ; illustration for steel plates
loaded over central area of radius a = R/3.

7 Comparison of measured final displacement-thickness ratio from
experiments with predictions by extended mode technique and by
“small-deflection” mode technique ; illustration for titanium mlates
loaded over central area of  radius a = R/2.

8 Comparison of measured final displacement-thickness ratio from
experiments with predictions by extended mode technique and by
“small-deflection” mode technique ; illustration for steel plates
loaded over whole plate area. Plates showed radial disolacement at
edge due to slippape.

9 Profiles of final deflected shane as observed in an experiment and
according to extended mode technique ; illustration of initial mode
shane function.

10 Comnarison of resnonse time ered~ ct ed by extended mode technique
with measured times , t~ at n~ ak di~r1acement , t~ at intercemt
with risinc’ disp lacement-time curve of line extendinc’ final deflection-
time curve~ illustration ~or stei’l plates .

11 Comparison of response time predicted ~v extended mode technique with
measured times , t~ at peak displacement , t~ at intercept with
rising displacement-time curve of line extendinc’ Final deflection-
time curve ; illustration for titanium elates.
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~The application of the mode approximation technique to a fully clamped plate
is here described. Mode solutions for finite deflections are obtained from a
sequence of instantaneous modes. Master solutions for chosen initial velocity
amplitudes are constructed in nondimensional form. These depend weakly on a
parameter of viscoplastic material behavior and size of structure, and so can
be applied to a variety of loadings and structures. Finding each instantaneous

mode shape and acceleration constitutes an eigen-problem , solved by finite elements
with iterations. Comparisons with recent tests on steel and t i tanium plates are
discussed in some detail. c’~
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